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3. STATEMENT OF PROBLEM

Solitons in stimulated Raman scattering are a coherent transient
phenomenon, in which short pulses of coherent (pump) radiation
are created in an envelope of longer wave length (Stokes)
radiation.

In a Raman active medium with homogeneous broadening solitons can
be created from a large class of initial conditions, including
those appropriate for spontaneous Raman scattering and for Raman
amplifiers with weak Stokes probe. The resulting pulse of pump
radiation will initially have a width comparable to the coherence
decay time.

The problem addressed in the work reported here is to determine
the detailed dynamics of soliton propagation in media with
homogeneous and inhomogeneous broadening. Of particular interest
are the rates of soliton narrowing and decay and the frequency
and temporal characteristics of the developing optical pulse.
Soliton decay occurs in broadened media, if the two optical beams
are not exactly In :esonance with the Raman transition, a
situation which to some extent frequently occurs in practice. It
's hence important to deternine the limitations on soliton
stability imposed by ths effect.

Both numerical and analytlca! methods have been employed.
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4. SUMMARY OF RESULTS

A. RESULTS FOR NARROW SOLITONS (HYPER TRANSIENT REGIME)

If the temporal soliton width is much smaller than the coherence
decay time, broadening can be treated as a perturbation.
Analytical results have been obtained for this case by using the
method of asymptotic perturbation theory, based on the inverse
scattering transform (IST) and also a method based on constants
of motion, which is more directly related to the physics of the
problem. Both approaches give the same results.

The following results are obtained for homogeneously broadend
media:

For exact Raman resonance the width decreases with gain according
to an inverse square root law, and becomes independent of the
initial width in the large gain limit. For off resonant Raman
scattering the soliton amplitude, defined as the maximum
relative pump intensity, decreases exponentially with increasing
gain. Since a relation exists between amplitude and frequency
detuning, this means ha~.t the average detuning increases in the

process of propagation. The decay coefficient is proportional to
the square of the >Ki lal frequency nismatch. The width
decreases more slowly than in the resonant case, reaches a
minimum at an amplitude of 0.5 and increases beyond that point.

Numerical studies confirm these results. The agreement is

excellent for exact :esonance, and very good for the off
resonant case. in the latter case at large gains the rate of
soliton decay is found to be somewhat smaller than predicted,
while the rate of soliton narrowing is somewhat larger. The

reason appears to be an almost linear frequency chirp, which
develops between the leading edge (lower frequency) and trailing
edge (higher frequency) of the soliton. This is a second order
effect which cannot be modelled in the approximation employed.
The effect is small however, as long as the detuning is small
compared to the inverse soliton width, even if it should be
larger than the Raman line width.

For inhomogeneously broadend media analytical results have been
obtained for the resonant case, and numer:cal results for both
resonant and off resonant case:

S:n the resonant case tne sol:iton width decreases very weakly with
gain like the inverse of the third root. :his is due to the fact
that for inhomogeneous broaden*ng the frequency spectrum is more
sharply locaized. :7en-e the temooral autocorre.ation function
has vanishing slope at the oris' n, ind narrowing occurs only to

***. ..'. . .



second order in the width. The predictions agree excellently
with numerical results.-

In the off resonant case two different cases occur. If the
frequency detuning is small compared to the line width, weak
soliton decay and narrowing occurs. If the detuning exceeds the
line width, however, complicated envelope modulations of the
optical pulses occur. Soliton amplitude and width go through
cycles of decrease and increase, with an overall tendency for
decay and pulse broadening. An analytical theory for this type
of behavior has not yet been developed.

B. RESULTS FOR 37OAD SOLITONS (TRANSI2N: TEGIME)

In the transient regime where the soliton width is comparable to
the coherence time analytical methods based on perturbation
theory are no longer adequate. Numerical studies have been
performed, which show that the main features found in the
hypertransient case also occur in this regime. in particular
pulse narrowing and decay occurs both in the homogeneously and
inhomogeneously broadened case.

The rate of decay is found to be much less initially than
expected from the first order theory. As a result a pulse
narrowing to a width of about 20% of the coherence time is
possible even in the off resonant case. A maximal frequency
offset of about 5% of the Raman line width can be tolerated in
this case. These results are encouraging for soliton experiments
in media with broad inhomogeneous lines like methane or optical
fibers.

A detailed discussion of the results under sections A. and B.
above are given in the Appendices A. and B., which are self
contained. Appendix A. contains a mathematical analysis of
perturbation theory for the homogeneously broadened case based on
soliton theory (IST). Appendix B. gives a more physical
discussion of homogeneous and inhomogeneous broadening, which
emphasizes the relavant physical processes, and employs
differential conservation laws for photon energy and momentum.

C. SATURATING SOLITONS FOR HOMOGENE .... A...N..
(HYERTRANS::NT REGIME)

7or sufficiently high field intensities medium a ;rdtJ2. u.
Raman solitons exist also in this case, and the total soiton
width can be much larger than the pulse rise time, g:7 .g rtse
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)

to a top hat type temporal profile. Soliton theory is quite
complicated for this system, and we have studied the resonant
case in the absence of Stark shift effects. Detailed results are
discussed in Appendix C.

If medium saturation is strong, the rate of soliton narrowing
per unit propagation distance is independent of the soliton
width, and the latter decreases linearly with distance. This is
much stronger than the inverse square root law found for the
unsaturated case, and makes this type of Raman soliton very
attractive for pulse narrowing techniques. Effects of frequency
detuning and Stark shift remain to be studied.

6
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ABSTRACT

The propagation of a sol.ton in a Raman medium in the
presence of collisional decay of coherence and detuning from
Raman ".ne center is studied. The spatial deoendence ol solton
width, position and amplitude is calculated *-y treatIng ne
decay of coherence as a perturbat.'-n. Two approaches are ..
one based on the inverse scattering transform and the other
employing constants of motion. Both give identical results wnich
are confirmed through the numerical integration of the equaacns
of Raman scattering. These results confirm the phenomena .-

soliton narrowing and decay, wn:ch nave been observed
experimental y.
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INTRODUCTION

The occurrence of solitons in a Raman medium has been
demonstrated experimentally :11 We present here the results of
an analy:t.aI stu'dy of the evo.ution of these solitons when they
propagate in the Raman medium i.n the presence of decay of
coherence and detun~ng from the ?aman ine center. Decay of
coherence (which arises due to collision of molecules in a
gaseous Medi',M is :nc-.uded as a perturbation to the exactly
solvable equat;Dns of trans:ent stimulated Raman scattering In
S- .:s effec- is ig:::re .  7he perturbation appears in the
equatron f-r-: . tne Iime evo :on -: te medium variable. Or. *ne
ther h and r-e pnys. a' .r-.em "s o f:nd the spatal" evolution

of tne opt:ca. f:lds w-:-r. are , ven as functions of time a-
some in:t:a" pos:t.in. - - . . reason earl :er formulations of

tne prod em 2,3 -an- c:e " appf e,: and a
re *)r : -za i. r lem I.erms of -P

op:-a. t :e, " s ne essary

S 1 r t ,r " " . . y -r. i -- a appl:ed to
rne case cf .u -'......:'r, . "..es w. ,c orresoonds to
.e . s. S " ..- a. .r ->: la. - sc.a-cel 7 .a er results
r. s,. r. narrow:- -- r.t rmeo r nis way. -owever

"e a e "... . . .e. -rrespond'ng " orf

* . . ~ ~ ~ ~ ~ ~ L" :.-*. -t- *',. * . s- y .:ng a-sympo01'

w .. .. IS 3 , .a .a : -e e deis E .uat: r.s

two -nser".a..zn aws f-r ..e - , -ase r. )acr.es
.. ' k-n " -3." res' , Wr "-- .- < " r'" Ww w : " .- m r 7

resu' s from a 1-re -  :ntegra7:_)r 3f tre cr:n=-a" non .inear

- process of -rarse." :oited Famar sraI-er:ng ;s described
- the following equa:: ns f,:_r the slowly var:-ng a np:itues for
*re pump and the Stokes fi&'is A and A )and 'he off diagonal
*a frix element for ne Epa..z i of . e -ea a X

A " X A'

X~ ~ ~ A £Z AA

A A

*-.e ciror:,a* s : t re- - -. orpagat'on distance trave'led
* n Ine garn -n u-1 n'4, *n 7era.. posi- cn of the solton -n



the optical pulse. Here and in the following we denote partial
differentiation with respect to these variables by a subscript.
The first term in equation (3) describes the decay of coherence
of the polarization of the medium with a rate E . This term is
assumed small compared to the rate of change of polarization of
the medium and is treated as a perturbation to the exactly
solvable equations. Equations 'I) to (3 for the case 6 =0 have
been solved by the !ST '2,4' The solut.ons to equat:cns : to
(3) which we shall study nere are the travel"L:ng waves :n one
soliton form. They are glven n'

X = , exp:B, sech A' 4'

As = - W A" -

AO = K. 4 -n: en

where

A( T). 3' -

The constants cm. and WT Jeer,-.,ne "-e "em:ura. width and
detuning of the f'e is - .4 ' e:-:a- ?a-.a-. resonance. The': are
reated to the red. a- Pa.:r.ar7- jr. J. he elgenva _;e W '
_naracter:zes e~-P -r. f n~ c...~" ramewcrK :;f :S.
2,4'

The parameters aU , a-- *e'aed " *h. rcsli e a '.e
-_)rresp.ond:n-. p:e *n- rar:T.ssi:'r. eyef,:cen> .e"
lete m e -- e -e [ P-n a ri s.' :-i a.nd Ph I n, As e f t hie s. . -' .

Wh-.en. E =, the parame*ers , and tz :re -. sans ' r and
are lin ear

r. the presence Df ..e oer 'urza ct i nnw "e .

assumed to be gener * S .f 'f- . a. ' ae -

both by asymptotic :e rca' -,. ne-r'i .. a . .. r.- sa n
11-e motion '5 . As ... .. .

spatial dependence f -.e sc:.' ocer.*:a. *Te .a " -r .

wnere the a ng-u ir ~r i tes a'- .........."~- 1

f ields as.



7- 'R. .k -km .k I%; .6 -V 'V Va-

S]

A PA P A S As =Cos( 2 A PA S exp(iI9 )sin

'PP

T = 9~Cos 0
The spatial dependence of q is given by a zero order term

' corresponding to the solvable case -f- =0) and an additional term
for e >0:

(0 (1)q = q 1  - q(l2

For the additional term we find:

qI q - & f s--n

To first order in ( we can ;se the one soliton solution (5) ana

(6) togetner with relations !9) to ca'cu'ate the correspon-.n,;
angular variables. For -ompar:son with earlier work it :s

convenient to rewrite the res: t :n :ne form

q 14)

where

Note that d here depends explicI.y qn t spa t a" an d
temporal varlates. n '.:s case we Dn a . c.e fcl low-ng res,..*

from Kaup's genera- equations for >ie " 'aIue and he

parameters a and

1-3 C4 Q-

5 r: < ,o-p' A. c e,:pA se'-" A,,

d 2

r

exp A' A '

q' ') t i "L t i'. J . " , . " * - ; -[".T ' . , .- -# i 
" .

" .



(d/d~) 7 )6 8 1 ( 1 - 0 (d d ().

Equations (18) and (19) can also be obtained from~ -ne fi~rst !twc
constants of motion for this problem. The constants anci ne--r
particu;ar %va~es for the solution 4) t~o (6) are given by

2) ~ dr-.) 2

C 4' Jdr 1. 2 £XL):. 23

7he spa t 4a: de r .'%a ves '-o e f-t - . en ts :r t-e presence c
the perturbalt.on --an :-e fz.ae r:)m equatcc-n '14 and g-v.e
equat."ons equ.,.-.a~enr I_~ :3 and 19; above. 7t~s approach - r
be extended to give an foat:n~ r ne temporal so.4.t~r.ps:z
( parameter W above . whir.. i~s equP.'alent to equat-Jon 2' 7.(

*temporal dependence of tne so i-on phase parameter abc-.e
*however canno t je !etermined in this way.

The solutions of equa-1 ;ns :8' and :9 are most eas:ily
expressed In terms _-, -- e parame t er At and h ereate
i nt enslt7 3fa the pump fiield at so. :tan center

As men- cnec a: Ine -oeffi,:ienrs G4Ja and L.) are :
P7751r- -.errns I- ::.eS e ~ emerflra_ w-i :1 7ne so..:n

* ~ ~ and *-ce rea:e re..n- feren-e ne~wee-. Ine f~ al

1. ... P arSe..

-. e., rej 7e-

a te:at7 e i-.rr Afe~::* ''.* :e~ -*e~d tw~

i.rpaaion ilS 3'-- zr er7......P
-ma-. Iec~jne Ow, f- ~ ~ ~~~
3:.are o! tne dJet a2 -S 1 a -s e ::seve ndern-:

* ~~:~-a.p-us.~2a~~cz 7- e tpnaviar -f'-

"eww ue- re 3Ses ea.. !r Ze ro e '-n1 ; reacnes a
7,: 7:1 f a the pont, where nerel'at.v

7-ip *erpura. -..>n--~n~ an be c~e!: ned -erms of the



parameter tL From equation (20) we obtain:

Rr - = 4R( I - TC) ) (26)

exp( 4 t C) = R (0)/(i - (0))](1 -3)/i for if- 0

= 4 2 for I: = 0.

NUMERICAL RESULTS

:n figures 1 to 3 we compare the results of a numerical
solution of equations (I) tc 13) to the perturbation analysis
above. The exact one soliton form of the optical fields was used
as initial condition a X =C, while the medium polarization X
was set equal to zero at U=O. The temporal position of the
fields was chosen such as to render the corresponding error
smaller than one part 4n thousand. The parameters and L

were determined for the numerical solution for the optical fields
frim the maximal relative pump intensity and the area under the
temporal pump intensity curve. The constant A, was determined
for off resonant so.tcns both trom the pump intensIty and width
by equation (23) and from the temporal derivative of the relative
:. .hase between O:rpmp and nckes anplitude. see equations (5) and

.nree daffere" :ases a-e sh.owr.. The paraimeters chosen wereLI =i
for a-' cases, f- =.1 and &? =0.0 n cae " =0. and C

=0. 5 n 7'a'f 2, ano Q =0.4 and Wr 0.5 :.n case 3. Cases
and 2 satsf'y Ire -r.: >n -nat the aamplng term De sinai
rmoared to *!-.r- -:v'- g e r:

ihe ma:-:ina. prrdpaga- -n - stance was % =2r'. ---Tes :a cnci b
snow tne ana yt.ca1 res-. s for 'ne s~qare -" and for tne
e:noonen -a " funct:on, equ.ation .24 .. o Ir pos io

wnich are straight 'ines- The dots ina:,Lae --.e n.mer'¢a&va ues, which fai a.most exactly onto 'e ,e.r ret a. e

Figures 2a and 2b snow the same paramelers f-r c-ase 2 w :-.
detuning 4)1 =0.5. -t>& agreement is exce.-- 7' 'or he so o.
position and very goD, for the soliton w:dn. Larger
discrepancies occur :. soitron w:ldt"h tt % :'. :n thns r-g:on
the rate of increase in sclioon width :s sma. er than pred:-ed
The reason for .i.. :s mainly the behav::r -f the n i n :nae
According to equations (5) and (61 the re-a:ve phase of p'4mp and
Stokes field shows :inear time dependene "Ve a .pt -. e
temporal region away from Ine so'torn center ,rresponding 1- a
constant frequency. The re'at:ve phasp for *he numerica"
solution on the other hand snows an a.rmost .:near frequen:y -:h:rp
with local frequency at so .ton center c.'se the anaiy**:.,al

.,7
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result. The chirp increases with increasing propagation
distance. In figures 2c and 2d we show the soliton amplitude
(maximal relative pump intensity ) and the constant The
latter is determined both from soliton width and amplitude (solid
line) by equation (25) and from the relative phase (dotted line)
by equations (5) and (6). Both methods begin to disagree at
larger propagation distances.

Figures 3a to 3d show the same results for case 3, in which
condition (27) for the validity of perturbation theory is no
longer satisfied. The numerical results do however show the same
qualitative features as in case 2. The auantitative amount of
soliton decay and broadening is smaller than predicted from
perturbation theory. Tigure 3d shows that the parameter as
determined from the scliton width disagrees strongly with the
value obtained from the ohase, the latter showing a much
stronger local detuning (smaller ) than predicted.

SUMMARY

We have obtained results for the propagation of Raman solitons in
a homogeneously broadened medium by asymptotic perturbation
theory and from constants of the motion. Both approaches give
identical resu..ts, which agree with results obtained in earlier
work for the resonant case (purely imaginary eigen values) and
extend to the non resonant case (general complex eigenvalues).
The experimentaly observed phenomena of soliton narrowing and
decay [7] are explained by these results. Numerical studies show
very good agreement in the region of validity of this approach,
a.d show that the qualitative features are predicted correctly
even in e -ase where broadening cannot be treated as a
pertrhatizn

e w;f 4- ..... wishes to acknow.ede stimulating discussions
wlth. Kaip on tne subject presented here.
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F:GURE CAPTIONS

Figure la: The square of the inverse soliton width is shown
as a function of distance for zero detuning. The initial soliton
width is equal to 1 and the Raman line width is equal to 0.1. The
straight solid line is the analytical result, and circles are
the numerical results.

Figure Ib: An exponential function of the temporal soliton
center is shown as a function of distance. Parameters are as in
Figure !a. The straight solid line is the analytical result, and
circles are the numerical results.

Figure 2a: The square of the inverse soliton width is shown
as a function of distance for a detuning of 0.5. The initial
soliton width is equal to 1 and the Raman line width is equal to
0.1. The solid line is the analytical result, and circles are
the numerical results.

Figure 2b: An exponential function of the temporal soliton
center is shown as a function of distance. Parameters are as in
Figure 2a. The solid :ine is the analytical result, and circles
are the numerical results.

Figure 2c: The maxima: relative pump intensity is shown as a
function of distance. Parameters are as in Figure 2a. The solid
ine is the analytical result, and circes are the numerical

results.

Figure 2d: Numerical results for the constant as a
function of distance are shown. Parameters are as in Figure 2a.
The solid line is the result obtained from "he pump intensdty
profile, and circles indicate the result ootained from the local
frequency profile.

Figure 3a: The square of the inverse soliton width is shown
as a function of distance for a detuning of 0.5. :he initial
soliton width is equal to I and the Raman lne width is equal to
0.4. The solid line is the analytical result, and circles are
the numerical results.

Figure 3b: An exponential function of the temporal soliton
-. center is shown as a function of distance. Parameters are as in

Figure 3a. The solid :ine is the analytical result, and circles
are the numerical results.

Figure 3c: The maximal relative pump intensity is shown as a
function of distance. Parameters are as in Figure 3a. The solid
line is the analytical result, and circles are the numerical
results.

Figure 3d: Numerical resulis for the constant as a
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function of distance are shown. Parameters are as in Figure 3a.
The solid line is the result obtained from the pump intensity
profile, and circles indicate the result obtained from the local
frequency profile.
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- QAs , 2.

A = Q A2

Here AS and Ap are the Stokes and pump electric fields.
Q Ist the off diagonal matrix element for the molecular Raman
transition, and may be cons'iered as an amplitude of coherent
excitation of 'he med: :m c. :cal ..onon '  -t and ( are time
"ike and space "ike coordinates, wh:-. are related to time t
and propagation distance z in the laboratory frame by "C = t -
z c and I = z . ?ar" a. f'erentiation wth respect to these
coordinates Is ind.:ated *y he correspcnding subscript. The
first term in .:iere. is-ona" coherence decay with
decay time r r where is the angu-ar Raman "ine width HWHM
Lorentz-an :n rajians :)or uinit of time. Suitable units havp
been chosen to render all' coupling constants equa: to un..y.

Certain e'fec-s are neglec-ed in these equations. In
addition to higner order StoKes generation and four wave mixing
these are effects r f dy-.amic Stark shi. medium polar.zation
and meti-'um sat7fra':n p.at-on ; t-e eo2er

: is convenient Io int roduce a Biccn vector for tr.e

S , = 2 A.. A, 2.3;

A A - A A_

A A -A A

5 S S S S S S_ S :
3 3 -

* n r he equations 2.: and-; 2.2 can ce
.- t "uated as

:24

-he .ast ei'-at:-,:n '2.5, is a differential conservation
.aw e:press.ing onser'.-atin f -htoD number. :n the absence of
-onere.nce d ayf r=-: ec;atioo 2.4 C.!n 2.5 are ;-t~gra:.e



'51, and admit an infinite number of additional differential
conservation laws. For V>0 the corresponding equations are no
longer conservation laws, but include dissipative terms.

Solutions for r= 0 are found by the method of :ST, where
a certain function of the physical amplitudes is used as a
potential in an associated linear wave equation (see references
given above). Two formulations of the initial value problem are
possible. In the first formulation the dependent variables are
assumed to be given for a,- positions at some initial time, and
their time evolution is sought. In this case the phonon
amplitude Q appears as a potential in the associated linear
equation '5:. in the second formulation the dependent variables
a-e assumed to be given at all times for some initial position,
and their spatial evolution is sought. The soliton notential is

" now a function ot the ontical fields [15]. While this
formulation directly solves the physical initial value problem,
where the ontical fields are given at the entrance to the
scattering medium, tne corresponding conservation laws are more
difficult to handle, since they involve non local functions of
the fields. We shall therefore use the conservation laws
obtained from the first formulation. The first two conservation
laws involving the ononon amplitude Q are given by '5,24-

, Q ' -C 0. 5 S =3 -2QQ 2.6)

Inm Q Q ) + n 0.5 S Q 2 Im( Q (2.7'

The first equation is a conservation law for polarization
energy, balancing the time change of polarization energy density
in the medium wih the divergence of the energy current carried
by the.. oicalfields. For =0 the pump is depleted in space

time regions of increasing medium polarization, and depletion 's
reversed in region of decreasing polarization. For >0 energy
is cst to the medium, and the direction of energy flow for the
fields depends on the net balance between tne rates of
polar'za-fon change and energy loss. :n steady state only the
loss term is kept, and the pump is alwaYs ieoleteo.

The second equation gives a non trivia -esult only for >he
case, where there is a space and time dependent chase difference
between fields and medi : 3xcita'on, for e>:am'ce when -"e
Dotical fields are not exactly in resonance with the Raman
-rantition. -n cno ase energy and momentm naance is
maintained through the generat:on of an oot:ca. ononon wav-e.
- ua:n 2.7) is a momentum conservation law for this wave
whic . balances the time cnange of the momentum dens_ :,y of the
7-n-onon wave (first term) with the divergence of tne excess
momentum current carried b-; the fields second termn. The latter
current is obtained from 2.2) is.

A AD A A =:m

Ap % A S  ,. . ..

S S3



In the presence of coherence decay momentum is dissipated in the
medium, which is described by the right hand term.

We now consider the one soliton solutions for the case =0
[ 163:

Q = exp(iB) sech(A) , 2.9)

AV= f R exp(i3) sech(A) 2. :0

A = tanhfA) ( A,
S R

S = - 2 Al exp(iB) sech(A) 0R tanh(A) - i WT '2.

RR

S3  = (2 sech2(A) -i

% = A2 2, 2 2
= R" R :' RR CA)I )R

This solution describes a coherent excitation of both medium
and fields travel'ing at a speed v smaller than the speed c
of light. Except for a phase factor the phonon amplitude is
symmetric about the temporal center (A=0) . Hence gain and loss
for the optical fields are exactly balanced (see 2.6) and
photons are transferred back to the pump culse in the trailing
edge of the soliton. The symmetric shape of the phonon amplitude
is in turn caused by a rapid phase shift :n the Stokes field at
the soliton center. The excitation can be observed
experimentally as a localized pulse of pump radiation or as an
,infinitely) extended pulse of Stokes radiation with a localized
dip .n intensity.The temporal width of the excitation is ecua to
At = 1 'L which defines an intrinsic t-e scale. The so-'u:"n .
will be a va:-d approximation to '2.:) and :2.2) if
The frequency of the pump field is detuned fron exact Panan
resonance by & = U If z f 0 the oot:ca: fiel:s carr'y a
phase wave witn local frequency £'o)c wcsf maximun ;a'ue a,
soion center is equal to I AR

S = S exp:i' t L=?

2 2 2AL..c = 0.. C . L. L.O A,,n A 6 ?

-Oc

At maxal 1height ph pUm pU se reacnes a .raction of total
:ntens ty. Equations 2.l4 5,..arize i"ma oservab.e a:et-r-
of the soliton and their relations:
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Il'V = 1/c + +1 u4)
The three components of the optical field Bloch vector and

the local frequency are shown in figure 1. For sufficiently
large negative values of A the solution closely approximates
the physical boundary conditions for a medium extending into the
positive half plane % >0 and optical fields vanishing or
assuming their asymptotic values for T<0

In the presence of coherence decay solutions exist which
show similar features as the soliton discussed above. In
particular localized excitations exist which show reversal of
pump depletion :!,14,15,!6,17]. :f the typical time scale of
change for the fields is larger than or comparable to the
coherence time (steady state or transient regime), these
solutions may appear to be cuite different from the soliton
solutions discussed above 725'. However if the relative phase
between the optical fields varies sufficiently slowly in time,
these solutions will show temporal narrowing and eventually
approximate the soliton solutions closely, as the width becomes
much smaller than the coherence time (hypertransient regime).
Since we are primarily interested in the dynamics of this
approach to the hypertransient regime, a discussion in terms of
the exact soliton solutions for the solvable case is appropriate
and useful.

As a result of coherence decay temporal width, position and
maximal amplitude will be general functions of propagation
distance, and the pulse shapes wi>: no longer be symmetric. It
is found that to first order in r the changes in width,
position and ampi.ude can be calculated without taking into
account the changes in pulse shape '21". We shall calculate
these parameters by integrating equat:ons 2.r and 2.9 over tire.
This gives ordinary differential eauations in for the
corresponding integrals. The integrals are calculated by using
solutions 2.9 and 2.11, however with oarameters W R and Q,
that are functions of - The resulting equations are:

d,d ) 1 kk='- = 2,2 2.5

Jdr 0. 5 S, S 2 (2.16)

-J- d- ( Q Q =2 k Co

2 = dC m( 0.5 3 ) = -2/ R I :- £ 1 '

= Jdt Q : - 2 , A / '' =2 /£"R 1
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The solutions are most easily expressed in terms of the
parameters and for = 0:

PRC bR = const , 
2.:?

() = (O) exp(-L) L = 4 t R 2

2

~ (l- ~"-or #0

2. 2
) = ) (0) 4 for W = 0

R T

The coefficients involving the propagation distance can
be expressed in terms of the steady state gain G or the
transient gain G' The transient gain G' is a measure for the
spatial change of the soliton fields and is appropriate for a
discussion of the internal dynamics of soliton propagation. It
is defined from equation (2.12) as G' = 2 z7 On the other
hand for soliton experiments the steady state gain G is more
relevant, since its value is limited by processes like higher
order Stokes generation to (approximately) G < 25 . This
parameter determines the growth of Stokes intensity for
undepleted pump in the steady state regime:

S  s(O) exp (G ) , G = 2 . (2.19'

In terms of G the coefficients in (2.:7, and (2.18) are
given by:

4 2 G 2 (2.20

For exact Raman resonance (, = 0) we obtain for the soliton
width from (2.18):

2
t = AT(O),'V1 + 2 [ -aT(0)) 2 0 (2.2:)

&I" - &r(c))2 G for f Ar(O)) G << I

f foor 0)G >>

In the limiting case of smal-l gain and width the width is seen to
decrease linearly with gain. The corresponding coefficient is
proportional to the square of the initial width. In the opposite
limit of large gain the width becomes independent of its initial

36

".;. . ... '. ,. ... "-<- .-. - - .. - . . . : .- -,.. "..... .. " "• " " "" ' -



value, and decreases with the inverse square root of the gain.
This limit is not actually reached for realistic gain values in
the hypertransient regime. Numerical results show however that
the soliton width does indeed become almost independent of the
initial width at large gain.

For non zero detuning the soliton amplitude j? decreases
exponentially, while the parameter $k , whose inverse is the
maximal local frequency of the corresponding phase wave, remains
constant. If the soliton width is of the order of the coherence
time, and the detuning is much smaller than the line width, we
have:

R AU ( &t )2 L 2 G ( ( C )2) 2 (2.22)

showing that the attenuation coefficient L for the soliton
amplitude is proportional to the square of the detuning. This
explains the observed rapid decay of Raman solitons for off
resonant SRS r14]. The soliton width reaches its minimum for

= 0.5 and increases after that point.

!:. SOL:TON PROPAGAT:C. 1N INHOMOGENEOUSLY BROADENED MEDIA

in inhomogeneously broadened media the matrix element Q
which determines the medium polarization at the optical
frequencies is obtained as a statistical average over molecular
subpopulations, eacn with different frequency shift A from
exact Raman resonance :n the laboratory frame. The statistical
distribution :s char&cterized by the line shape function g(A ).
if we denote the narx element for the ooulation with frequency
shift A by .a equati.n 2.4 for the matrix element is
replaced by:

= S (3.1)

A A (3.2)

We integrate (3.",, substitute t he result into (3.2) and obtain:

A T
d r' A r r ) 0.5 S r ) 3.3)

Q (M ) Jdr g r- C 0.5 S (') 3.4)

where

( A
g( ) = d expI A()

is the Fourier transform of the spectral line shape function g
(temporal correlaton function).
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We note that the case of homogeneous broadening is included in
(3.4) with g(t ) = exp(-rr ). This shows that in the
absence of medium saturation homogeneous broadening is equivalent
to inhomogeneous broadening with Lorentzian line shape. The
conservation laws (2.6) and (2.7) require the time derivative
of Q , which is obtained from (3.4) as:

0.5 S + Jdr' g( -c' ) 0.5 S ( ) (3.5)

= Q + Q 1

where g is the derivative of g The last term in (3.5) is
the correction from coherence decay to the exactly solvable case.
We shall discuss here only the case of exact resonance at line
center, and of a symmetric line shape. In this case Q is
real, and we obtain from the first conservation law in analogy
with (2.6):

(Q Q). + 0.5 S37 = 2 ( Q( ) Q ) (3.6)

The correction term is calculated to leading order in the line
width by expanding the correlation function g

Q() = ;(0) Q(o) + *(o) d ' Q (0) ,) ... (3.7)

Here Q(O) is the matrix element for vanishing line width. For
homogeneous broadening the first term gives a non vanishing
result: g(0)= - t , due to the weak decrease of the Lorentzian
spectrum at large frequencies. For inhomogeneous broadening on
the other hand with a Gaussian line shape or other shape with
sufficiently fast decrease at large frequencies the first term
vanishes, and the leading contribution is of second order in the
line width. In this case we obtain from (3.6) the differential
equation:

(d/4~2 g(0) K , (3.8)

i ddt Q Q =2/L 3.9)
1 R

K,= 5d Q(O) ) (-c d' Q(O)r() = 0.5 5r 2o 4

For the case of a rectangular spectrum with half width the
solution is:

3= L >(0) 1 0.5 T ) 2 . (3.10)

The relation between propagation distance and steady state gain
is in this case:

G= g(o) =' (3."
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giving the final result for the soliton width as a function of
gain:

At = 4L(0) ( 1 0.5r ( r(0 )) 3 G )(-3.2
3

The rate of decrease is now proportional to the third power of
the initial width, and the small gain limit considered in the
second line of (3.12) above is the only realistic case.

We have not studied the off resonant case so far. Numerical
results indicate, that the behavior can be quite complex in this
situation. For sufficiently large detuning width and amplitude
can decrease and increase alternatively, and strong pulse
deformations may develop. We shall discuss these results in the
following section TV.

IV. NUMERICAL RESULTS

The transient SRS equations (2.4) and (2.5) were solved
numerically with the one soliton form (2.11) for the optical
fields as functions of time as initial condition at zero
propagation distance. The soliton amplitude and width were
determined for the numerical solutions from the maximal value of
S and from the integral I (equation(2.16). For inhomogeneous
broadening a rectangular line shape was chosen for numerical
convenience, and the line was sampled at a finite number of
equally spaced points.

Figure 2 compares numerical (circles) and analytical (solid
lines) results in the hypertransient regime and the resonant case
for homogeneous (lower curves) and inhomogeneous broadening
(upper curves). The agreement is excellent in the latter case,
and better than 10% for the homogeneous case. In this and all
subsequent cases the time scale is fi-ed by choosing the initial

soliton width as the unit of time. The line width is 0.! for the
homogeneous and 0.1571 for the inhomogeneous case, which results
in the same gain per propagation distance and the same coherence
time for both cases. The soliton width is hence only 10% of the
coherence time. At a gain of 20 the homogeneous soliton has
narrowed by about 15%, while the inhomogeneous soliton nas
narrowed only by about 3%.

Figures 3 and 4 compare numerical (c:'rcles) and analytical
(solid lines) results for soliton width and relative amplitude in
the off resonant case and for homogeneous broadening. Initial
soliton width and line width are as before and correspond to the
hypertransient regime. The values chosen for detuning are 0.1,
0.5 and 1.1. These values correspond to the lower, middle and
upper set of curves in figure 3, and to the upper, middle and
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lower set in figure 4. As predicted the soliton width (figure 3)
is larger for larger detuning. For the first two cases is
actually larger than predicted, with a predictive accuracy of
about 10% . Somewhat larger discrepancies occur for a detuning of
1.1 . Here the soliton width is predicted to increase, while
the actual width almost remains constant. A similar behavior is
found for the soliton amplitude (figure 4). Larger discrepancies
occur again for a detuning of 1.1 , where the actual amplitude is
larger than predicted. These discrepancies are caused by the
behavior of the phonon wave. .n Particular the local frecuenc':
(see equation (2.13)) begins to show strong deviations from the
one soliton form (2.13) at larger detunings, including an almost
linear frequency chirp with increased detuning at the

edge of the soliton.

The effects of detuning are m c more pronounced for
inhomogeneous broadening, especially If the detuning is
comparable to or e: ceeds the ine width. This is plausib:e

- view of the fact that the weight of higher frequency components
:s much smaller in the inhomogeneous case than in the homogeneous
case. A thorough physical analysis and analytical results remain
to be given. .igure 5 shows numerical results for so.' tcn width
(solid lines) and amplitude (dotted lines) for a rectangular line
with a half width of 0.1571 and an initial soliton width of 1.0
(hypertransient regime) . The values for detuning are C.::Z, C.:
and 0.2. At given propagation distance the so'iton width
Increases and the amplitude decreases wit? increasing de..nin;.
For small detuning (0.05) the width decre.;es as a function of
distance, while it increases initially for large detuning (0.2
and has a maximum at a gain of about 12. At about the same gain
the soliton amplitude reaches a minimum. This behavior is in
strong contrast to the homogeneous cas-.

Soliton narrowing is much stronger in the transient regime,
where the temporal soliton width is comparable to the coherence
time. In the analytical treatment above we found that the
narrowing rate per gain unit is proportional to the second power
of the line width for homogeneous ano to tne third power for
inhomogeneous broadening. Figures 6 and 7 show numerical resolts
for width and amplitude for homogeneous anc innomogeneous
broadening. The initial soliton width is 1.C and the " :ne wdI4h
is 1.0 for homogeneous and 1.571 for inhomo~eneous or7ace-:ng.
.he values for detuning are 0.05, 0.1 and 0.2.

or homogeneous broacening (figure 6) a detuning of 0.05 or
5% of the :ine width most be considered a .it. or ract .
applications to pulse narrowing. in this case the soliton decays
to about 90% at a gain of 20 and narrows to a tempora. wotn of
20% of its In~tla. va+ue. A' 1% cetunlng the 90% ampltuce
level is reached already at a gain of 7, and the soLiton wid*h

is 40% of tne in tia, value. t % interestIng to note that th
tial rate of soliton decay >; mucn less than in the
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*hypertrarisient regime, where expornental dlecay :s to,!-d

Inhomogenecus broadening ti 7. -D .eb e-er
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The strong int.uence of detuning witn only a few percent of
the Raman line width will not have severe consequences for .ned.a
with broad Raman line. For media w.tn narrow -ines however t-e
'requency stability of *he pump laser may .oe 4n this range. r
treatment assumed monochromatic otid ueams with -

o e. " :s possibe nwever tha the onse.'eqtlew?:-'- -"-e lg• a s "e- p .fiuc;:ation.s as&,z,:atea w2 ne n~n vanishing as- :i

have a sim lar in u-.nr,- on R . ' "tv. ' " "n"
experimental observt..ons .- Ippr- :s DOSSID.I ity "26

This work was sop,,: . :" . A:-y ff ce of -'e .er".

42



REFERENCES

. K.J. Druhl, R.G. Wenzel, and ;.L. Caristen: "Obser.atinn of
solitons in stimulated Raman scattering", ?hys. Rev. Lett.
51, 171-1176 (1983);

2. G.i. Machen and W.H. Lowdermilk: "Self-induced gain and loss
modulation in coherent, transient Raman pulse propagation",
Phys. Rev. A14, :472-1474 (1976);

3. N. Tan-no, T. Shirahata, -.koto, and H. Unaba; "Coherent
transient effect in Raman pulse propagation", Phys. Rev. A
12, 159-168 (1975);

4. :.N. Elgin and T.3. 0'-are: "Saturation effects in transient
stimulated Raman scatterng', 7. Phys. B: Atom. Molec. Phys.
12, 159-:68 :1979);

5. F.Y.F. Thu and A.C. Scott: "Inverse scattering transform for
wave-wave scattering" Phys. Rev. A 12, 2060-2064 (1975);

6. S.'-. McCall and : . ahn: "Self-hnduced transparency",
?hys. Re,:. 183, 457-4-5 '1969'

7. M.7. Ablowitz, . Maup, and A.C. 'ewe!:: "Coherent pulse
ropagation. A z-snersive, irreversi.Ie .p-enomenon",".

Math. Phys. " , " 52-" 53 ,!"974'

. ... U--o and ..igu- - . "o tarv w.v.e sout ons n

coherent two- photon ;<,s~q ct-,J ,piton" , W'ys. -ev. A 1 6,
2CC -2A3 6,977',

5. Y.,7. "onopnlcki dnd . -: " " anenus propagation

.f sh , d fferert-wdve ength ontica. pu-ses", ys.T v. A
24, 2567-2583 V.981);

"C. D... Kup "The method of solution for stlmula-e. 7aman
scattr.n ani two-photon propagation, P'hysica 6D,

.. Steudel: "So.itons in stimulated 7-aman scattering and

resonant two-photon propagation", Physica 62, 155-176
(1983);

12. K.J. Druhl, J.L. Carlsten, and ?.G. Wenzel "Aspects of

soliton propagation in stimulated Raman scattering",
Stat. Phys. 39, 615-620 (1985);

13. K.J. Druhl and G. Alsing: "Effect of coherence re-axation on
the propagation of optical solitons: An analytical and
numerical case study on asymptotic perturbation theory"
Physica 20D, 429-434 (1986);

43

- -

' % : _, <-.':. <- '/-'- -; o%<-%- x--.<.-?--< ,-% -.. .;<-_..-- ;..,...< - ,-.'-,-'-'. . •-''- >> . •,.--- '.



14. R.G. Wenzel, J.L. Carlsten, and K.j. Druhl: "Soliton
experiments in stimulated Raman scattering", J. Sta.
39, 621-632 (1985);

15. D.J. Kaup: "Creation of a soliton out of d.ssipati:n'
Physica 19D, 125-134 (1986)

16. H. Steudel: "Stimulated Raman scattering with an inltia1
phase shift: The pre-stage of a soliton", Opt. Comm':.. t7.
285-289 (1986);

17. J.C. Englund and C.M. Bowden "Spontaneous generai31 .t
Raman solitons from quantum noise", Phys. Rev. Lett. 57,
2661-2663 (1986]

18. M.G. Raymer, !.A. Walmsley, J. Mostowski and B. Sobolews,:d
"Quantum theory of Stokes pulse energy fluctuations",
Opt. Soc. Am. :; 1, 547 (1984);

19. T.R. Ackerha.. d P.W. Milonni: "Solitons and fou---wave
m iing", Phys. Rev. A 33, 3.35-3198 (1936);

20. C.J. McKinstrie and '.. DuBois: "Relativ;istic solit r'-wave
solutions of the beat-wave equations", Phys. Rev. Let. 57,
2022-2025 (19 '

21. D.J. Kaup: "A pe '_.-b& ion expansion t:r the Zakha:'ov-uhmt
inverse scattering transform", SIAY J. ADDl. Math 1
121-133 :197611,;

22. D.J. Kaup and A.C. Newell: "Soltons as particles,
oscillators, and in s-owly cnanging media: A singu'ar
perturbation theory", Proc. a. So,. Lond. A 361, 413-44E
(1978;

23. V.I. Karpman: "Soliton evolution in the presence of
perturbation", Physica Scripta 20, 462-478 (1979);

24. G.L. Lamb, Jr.: 'Elements of soliton Theory", Thn Wiley aInd
Sons, inc., New York, 1980

25. S. Elyutin and J.N. Elgin: "Comment on recent roser':aticn 9f
solitons in stimulated ?aman scattering", Opt. Commun. CED,
104-106 1986);

26. >.L. Carlsten: personal communicaion Department of

Physics, MontanA 3tate University.

*4



F:GURE CAPTIONS

~ure The three po .e.> 7- . **..

rst anJi second cc(; -
.jmponen* l-.: >. -:'!.*j-~ ..

- .-. W.

e .w ~ .. e *- -

- nes are analtlca r a~ V I a :1

Va " ;es 'oar e 7n:~ Id I~.-- fd~
and I. ( I we r crve s e ~ ~ > w- S. . . fe.

e w -n s rad a:-s ::or mz -* *

-.e of f resornant casp ;re scjw,- 1 -' -. 7~~--

'Qe ypertr-ans~e. r-eg;n-. e Wc - C I
Ue .i ni 7 is S C in C' t7

r. e and -cped 7; D W

-a~n-.itude. Frequencies are .r

..e- time unit is the- 4-i. 1  .7

-:gi.re 6 Numerical r~> * .. >.~

-.ze .inl .pper soli' e ~ ~ . . .

SI7 and Ie -ar C- .

,e-:nce sr hn n r. + -: a~

71ue7Numer-.ca. r 7 -



the off resonant case are shown for inhomogeneous broadening in

the transient regime. The Raman line width is 1.571 and the
detuning is 0.05, 0.1 and 0.2. In this sequence of values the
lower, middle and upper solid ines are the width, while the
upper, middle and lower chain dotted lines are the soliton
amp " r;de. Frequencies are 4n units radians per time unit, where
tne time unit is the initial soliton width.

Figures Ba and 8b -he temporal pump pulse for homogeneous
broadening in the transient regime is snown for a detunng of 0.0
Od) ani 0.05 (3b). o:.ses , snown for a gain increment of 2,

beginning with t. uj-e :n **e upper right part.

.:gures oc, ana 3 -".e 'empora_ U'oMn pulse for homogeneous
broadening in the translent regime is shown for a detuning of 0.1
'8c) and 0.2 (8d). Pulses are shown for a gain increment of 2,
beginn.ng w... the iitial pulse in the upper right part.

Figures 9a an 9D Tne temporal pump pulse for homogeneous
broadening in the transient regime is shown for a detuning of 0.0
:9a and 0.35 3r ?uses are shown for a gain increment of 2,
beginning with the in. :d pulse in the upper right part.

Figures 9c and 9d The tem:.oral pump pulse for homogeneous
bruaden-ing In the -ransien regime is shown for a detuning of 0.1

?t and 3.2 3 d' Pulses are shown for a gain increment of 2,
zeginning with the inilt i pulse in the upper right part.
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APPENDIX C

Hffect of 'ledium Saturation and Coherence Relaxation
on the Propagation of Raman Soiltons

christian .J. lourenne and Kai J. bruhi
Department of Ph 'ysics

'laharishi International University
Fairf'ield, Iowa 52556

AKSTPHAC T

Trhe effects of medium saturation and homogeneous broade-ning cr
the propagation ot sol tonis in stimulated Raman scattering art,
discussed. The aenteraI pro(blem ineluding Stark shift and medium
satuoration, but "i thoul broadenrng has bx en solved bY haup anid Stetw-
del uiinig :in texterrsjt~ri (,4 the \KSmethxi. For the limit inif Is

rweg Ii g bl1e -itark ,ihi ftt , wt, obtain fi1rst wie r equa t ions t)r t-he
,-;c) it on L i d th ii t-he preseni ,e ()t h )moientN A iis t)r( adenlri~l ri . Iste

ism to - e1t ioris- ti d ts the (-f tee-t A.) rne-i UMn sat urat 1,)n enr
puilse varro% in,. :lnd~ e rT hem to ;I a rumetaI nl
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In stimnulated Haman scat ter ing (SS) energy 15 ox('haIiaed bet t~een Iat I aser
beams at different frequencies bv nonilinear interact ion in a suitable mediulm.

* Eniergy is norm~al ly transferred from the hvigh frequency eamn (pump) to the low
frequency beam (stokes). In both numnerical III aol laborat.ory K ,3j

* experiments. soli toni ike ex i tat lors hnave rleericeae by A sudden ptias, (Ji.viin
of 180 degrees. lit the irije 'ted4 st okes beam. fin the prese-nce ot (O 1115 1ofld

coherence dec-ay in the mediutm a-nd for e~xact re'soniance, thfe noise snh(ws t re
features ()f temporal narrowing anid acc-elerationi in the laborator-7 frame(

[13, 41.

* The effeet Af -ohe rence jlec av onl tie propadat ion of Ramnan soi i tons has
alIready' been studied both antaly t icallv and numerically using asymptot-i(:
perturbation theory [1,3,1Ii. In these studies however, c-ertain effects like
medium saturation or dynamic Stark shift were neglected.

in this paper, t.e discuss how medium saturation affects temporal puls.'
* narrowing, using a perturbative method which is based on the energy
* c(onser-vation law for, medium and optical tields ]

T'he general probler of soliton propagatio)n in stimulated Ramnan scattering
(SRS), including Stark shift and medium saturation, has been solved Lty Natip [61

* and Steudel [I] using an e-xtension of the \KNS method [1 . In the presence of
c. isional (-oherence decav and for the limiting case of negligible Stark

* shift, ixalip's and Steudel's equations [l6,11 for transient SPS becomf-:

I + +

ts + s, r +

+ rs
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In the hypertransient regime r +)T>> Yr ), the physical quantities vary
on a time scale much shorter than the dephasing time 1/y . In the limit X=u,
equations (1.1) to (1.4) are integrable and exact solutions can be found using
an extension of the inverse spectral transform [6,71. For the special case of
purely imaginary eigenvalues, the one-soliton solutions to equations (1.1) to
(1.4) are:

2_ 2 :,,
r = 11I1/4) cosh(22)/1 /4)cosh2 t +1/4) (2.1

2 2
= = -1 + (1/2)/H( l -1/4)cosh (2p +l/4) (2.2)

+= (2U 21/4 sinh(tL)/(( ,2-1/4)cosh2 (2 +1/4) (2.,3)
',2

S 3 = -1 + f'-?II 1 /4)cosh (2) +1/4) (:.4

where is the imaginary part of the eigenvalue and :%T - X/4 1 1

In this case, the optical fields are exactly in resonance with the irrian
transition. In the following we discuss the physical processes undt.rlying
soliton propagation for different values of V1. .n the leading edge of the
pump pulse (V)i>O), :+ is inl phase with the induced polarization r+ in the
medium, leading to a decrease in s3 (stokes scattering). In the trailing eoige
(t.<O), however, s+ has changed sign and s. increases now with propaaation
distance. This means that the stokes beam fexperiences loss with corresptinding
gain for the pump beam (antistokes scattering). By the same mechanism the
medium is excited in the leading edge ano deexciteo in the trailing edoge. bNt.;
prx-esses ( loss and gain, exci t at ion and deexci tat I on) are perfect. iy baian(.eti,
as is e" ident from the symmetric sol it.on shape.

:wo iimit irI£ 'ases are' finterest

,-I wht-n ri f l ar (I -woog. the atx%, arc ina I t 1a" I u itons iit
,,11i:'alrit t( the ,ne s ol ionr- solutions :'()ind ,%- thui arid .(') jii t' I I tie (:is'e
Sri r.hich mediin saturation is. rneglecto4 (r--+ -1 ) in this case. t ti te'lxr'al
%.udtn A>i th.. soi iton is muc'h smailer thani t ,he Rabti ll,, , 1iurin,, ivh,..,
I )p))ii t I.- i I r, rn st ' Occurs ad t he (gain- Il5-, F tI the't t.eL, Ihe, -osinethf [iand

!h,. pumr 6#,:uns o 'curs very rapli(iy"

h) ih,'n J ; 1pp (; i-'hes 1 2 , I rl 0 ' .- Me Xtf -; "t . Mf m,. I i 'Ii -I
""I
riti re iea nl in t -r i rA )V ) aIt n \t ' SO no i ti Ih vIt I u, . t h T i (- ii t I a i' t i
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expected to be valid also for transient SRS ( any phase change for s+ will lead
to gain-loss reversal and solitonlike excitations).

If the coherence decay time T = I/" is long compared to the pulse tvidth,
* approximate solutions of equations (1.1) to (1.l) can be obtained through

perturbation theoretic methods [1II. Under experimental conditions f[ , thfe
optical fields are given as functions of time and une wants to find their
evolution in space. Kaup's general perturbation theory [11] cannot. therefore be
directly applied, since the soliton is defined in terms of the optical fields,
white the perturbation occurs in the equations for the medium variables. A
generalization to this -ase seems possible, and has been given for the limiting
case a) above by Kaup [12]. We shail here use a more simple and direct approach
which uses the following energy onservation law derived from equations (1.2)
and (1.4):

(s3 = -(r3) T  (3)

The basic assumption of our method is that for small X, the analytical

solutions of equations (1.1) to (1.4) have the form:

r = r+(n(X)) + r+  (4.1)
+ +1 +

r., r ql(X)) + r3 (4.21

s = s°o { } + Sa 1t :
3

The first (zeroth order) terms are the unperturbe*d soiutirs (2.1) o o2. 2) in
which-V1 is assumed to be a function of \, and the .ecorid terms in the ,be\e
,,quat ions are first order c)r'rect ions to the one s i ' on solut ions, 'hi *h
describ*, changes in shape.

i nttegrat rig te ' nservation Law (M , *-teen I'=-00 vi l:+cO lo,1

ti;t i ri:

{j/ij ) /= ,I - . (+60 } - I %

Ihe t fm int(.a ra t s represents the temporal .i i h ho ,) p . . pui ,.

In unider to (aii'ii t the :isvnpt i t i{ \ it- C 1 +cc , O. .- , . id

1 .2) t)4 tbtain"

{p r ).. + r - £ '

+ + ,1 I +

intevr'at irig4 t th ,ides fron I:-O t :+0Q} trii r'-.Imi-, iL.r th n,, 1*-
di".,.,nai rn ittr' ,i me l *I,,I hi \am -.h mat I:+00 ,r -00 1 " , th . t
equja(l ion:

,"

"S.,



r 3 +00) 1 z - r (IF

since r3(-M )=-I. Equation (6) shows that the :isvmptot ic valti- )f rj :it 17z+oo

is not equal to -1 . Due to r'o)herence decay, the pert'ect ba lan e t- M.eeri rTd

excitat ion anti deexe i tat iori is up-set: at the trarw "ingede of the- pul sto the

medium p0 larivat ion is smialIler than at the I eatiirig edige. As a ;Aul

1'ract ion of atoms get s trapped inl the upper 1level ()t the Ramari t rarisit i I in

To first order inX, the [xpklat i'ri difttnce r. +00) Is L~jVtn1 t)%.

r. 0) I + 7 i

Now oombinirg equatiLons )and 7) u)ht airi u'ijr' Ir rial result 1 r tht- -spat .:i

dependenee of the, solit ori i d th: 0

dw x r fl,(8

We requ ire t hat the pulse t, (ith w is ocri 1rely det ,rii nei Lwv t ht )fit, i i ri

part ,3 of the solution: 
+ 0

1'o f'irst o-)rde r i n t the r114h t hand s,;idHe 1q iqa t )ri 18 1s ~'!-Mre I tt41 hef
one so II ton I ( mi t r ibu t in jnr i v)l.- teriu e:

in t.tiich Y ~ is niot, t urct Ionr of X . Fh't Io fit OT I s :if r - , :A I I :A I ,'t -'i tc.

ising the solut i iris ( . ai 2.1 ti l 'iTtrfi

is( ki/dj/ s* +o ) (f'dd
Ihi~~ * 'ilaI+:



iaccordance with a previous perturbation analysis oif the unsaturated c-ase

* when the medium has a large medium saturation ( c /Z), the --olltorl
width decreases proportionally to X:

-(X 4Y'X + w(O) (1,--41/2) (14)

In order to check the acc-uraey of our perturbation met~hod, i,, hav.e sIved
oquat ions (1I.1I) t~o (1I. 4) numeri (-allIy ; the Ramnan medium was assumed to Lb.
located in the half space-- X.)U arid not excited intal:for c)-,tiyaiISC .1
finite duration, the bXouidar\ c-ondi t I ilis were:

for r1>o: r- (X,T=0) U

r 3 (\,T=0) 0

s (x\~o,r) (~~,

Fs. (X=U,T) = i(=O ''
A3

h i.tatM t*e Ids \ tre akY l 1,o ne equal1 0 Th.1 ,ft -,()r n ' 1o r COiT :1T "nn It n'
temi rarice ()f thfe haintti ('elI 1 t\() and thir f--ob)ut iin vw'is ti er; a;it~

heit pulses- prlpaiatt-d inlto th- (-l1 (V'U) , h)\ 501o" 1fl(i( c I)(-(I. i

run~': Fovir iitc'r? it iut \lute- W"? I WOd t'(n di I tererit'A -mi wi If".,
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